E3 cryptosystem - ορισμός. Τι είναι το E3 cryptosystem
Display virtual keyboard interface

Τι (ποιος) είναι E3 cryptosystem - ορισμός

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

E3         
ANNUAL TRADE FAIR FOR THE COMPUTER AND VIDEO GAMES INDUSTRY
Electronics and Entertainment Expo; E3 Expo; Electronic Entertainment Expo; Electronic Entertainment Exposition; E Thrizzle; E3 2006; History of the Electronic Entertainment Expo; E3 2003; E3 Media Festival; E³ Expo; E³ 2006; E³; History of E³; E3 Media & Business Summit; E3 2007; List of games appearing at E3 2007; E3 Media and Business Summit; E3 2004; E3 2005; E3 convention; E3 2008; E.III; E 3; E.3; E3 (Electronic Entertainment Expo); E3 09; E3 1996; E3 1997; E3 1998; E3 1999; E3 2000; E3 2001; E3 2002; E3 (games show); E3 press conference; Electronic Entertainment Expo 1999; History of E3; History of Electronic Entertainment Expo; Electronic Entertainment Expo 1996; Electronic Entertainment Expo 2005; The 2005 Electronic Entertainment Expo; Electronic Entertainment Expo 2008; E3 2022; E³ 1996; E³ 1997; E³ 1998; E³ 1999; E³ 2000; E³ 2001; E³ 2002; E³ 2003; E³ 2004; E³ 2005; E³ 2007; E³ 2008; E³ 2022
<communications> A European framing specification for the transmission of 16 multiplexed E1 data streams, resulting in a transmission rate of 34.368 Mb/s (= 34,368 kb/s). (2002-03-22)
E3         
ANNUAL TRADE FAIR FOR THE COMPUTER AND VIDEO GAMES INDUSTRY
Electronics and Entertainment Expo; E3 Expo; Electronic Entertainment Expo; Electronic Entertainment Exposition; E Thrizzle; E3 2006; History of the Electronic Entertainment Expo; E3 2003; E3 Media Festival; E³ Expo; E³ 2006; E³; History of E³; E3 Media & Business Summit; E3 2007; List of games appearing at E3 2007; E3 Media and Business Summit; E3 2004; E3 2005; E3 convention; E3 2008; E.III; E 3; E.3; E3 (Electronic Entertainment Expo); E3 09; E3 1996; E3 1997; E3 1998; E3 1999; E3 2000; E3 2001; E3 2002; E3 (games show); E3 press conference; Electronic Entertainment Expo 1999; History of E3; History of Electronic Entertainment Expo; Electronic Entertainment Expo 1996; Electronic Entertainment Expo 2005; The 2005 Electronic Entertainment Expo; Electronic Entertainment Expo 2008; E3 2022; E³ 1996; E³ 1997; E³ 1998; E³ 1999; E³ 2000; E³ 2001; E³ 2002; E³ 2003; E³ 2004; E³ 2005; E³ 2007; E³ 2008; E³ 2022
End-to-End Encryption (Reference: cryptography)
E3         
ANNUAL TRADE FAIR FOR THE COMPUTER AND VIDEO GAMES INDUSTRY
Electronics and Entertainment Expo; E3 Expo; Electronic Entertainment Expo; Electronic Entertainment Exposition; E Thrizzle; E3 2006; History of the Electronic Entertainment Expo; E3 2003; E3 Media Festival; E³ Expo; E³ 2006; E³; History of E³; E3 Media & Business Summit; E3 2007; List of games appearing at E3 2007; E3 Media and Business Summit; E3 2004; E3 2005; E3 convention; E3 2008; E.III; E 3; E.3; E3 (Electronic Entertainment Expo); E3 09; E3 1996; E3 1997; E3 1998; E3 1999; E3 2000; E3 2001; E3 2002; E3 (games show); E3 press conference; Electronic Entertainment Expo 1999; History of E3; History of Electronic Entertainment Expo; Electronic Entertainment Expo 1996; Electronic Entertainment Expo 2005; The 2005 Electronic Entertainment Expo; Electronic Entertainment Expo 2008; E3 2022; E³ 1996; E³ 1997; E³ 1998; E³ 1999; E³ 2000; E³ 2001; E³ 2002; E³ 2003; E³ 2004; E³ 2005; E³ 2007; E³ 2008; E³ 2022
European digital transmission format 3 [Additional explanations: 34.368 Mbps]

Βικιπαίδεια

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.